自然资源信息化

2025, No.148(04) 41-48

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于遥感图像智能解译的全国采矿损毁土地状况调查技术框架研究
Research on technical framework on national survey of mining-damaged land conditions based on intelligent interpretation of remote sensing images

闵春平,姚敏,赵岱虹,李治君,杨帆,涂强,吴豪,金明哲
MIN Chunping,YAO Min,ZHAO Daihong,LI Zhijun,YANG Fan,TU Qiang,WU Hao,JIN Mingzhe

摘要(Abstract):

为推进全国采矿损毁土地现状普查工作,推进矿山生态环境修复的科学化、规范化,数据采集分析及核查评估的智能技术应用亟须加强。本文梳理总结了国内外遥感图像智能解译的研究现状,尝试融合多源、多模态大数据技术,将遥感图像智能解译技术与知识图谱和图神经网络相结合,构建了知识引导的全国采矿损毁土地状况智能化调查框架。该框架分为大数据采集汇聚层、大数据存储管理层、智能解译层和应用层,有助于优化采矿损毁土地状况调查流程,形成采矿损毁土地数据智能化采集更新机制,为盘活利用采矿废弃土地、分区分类实施矿山生态修复、促进煤矸石和尾矿等资源综合利用提供科学依据和技术支撑。
To advance the nationwide survey of mining-damaged land conditions and accelerate the scientific and standardized development of mine ecological restoration, it is urgent to enhance the application of intelligent technologies in data collection, analysis, verification and calibration. This study first systematically reviews the research status of intelligent interpretation of remote sensing images both domestically and internationally. Subsequently, through the integration of multi-source and multi-modal big data technologies, it combines intelligent remote sensing image interpretation techniques with knowledge graphs and graph neural networks to construct a knowledge-guided intelligent survey framework for nationwide mining-damaged land. This framework consists of four layers: big data collection and convergence, big data storage management, intelligent interpretation, and application layer. The framework optimizes the mining-damaged land survey process, establishes an intelligent mechanism for mining-damaged land data collection and updates, and provides scientific basis and technical support for revitalizing and utilizing abandoned mining land, implementing ecological restoration of mines through zoning and classification, and promoting the comprehensive utilization of resources such as coal gangue and tailings.

关键词(KeyWords): 采矿损毁土地;遥感图像智能解译;深度学习;语义分割;知识图谱
mining-damaged land;intelligent interpretation of remote sensing images;deep learning;semantic segmentation;knowledge graph

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 闵春平,姚敏,赵岱虹,李治君,杨帆,涂强,吴豪,金明哲
MIN Chunping,YAO Min,ZHAO Daihong,LI Zhijun,YANG Fan,TU Qiang,WU Hao,JIN Mingzhe

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享