人工智能赋能内部审计高质量发展路径研究——以自然资源部门内部审计为例Research on the path of AI-driven high-quality development of internal auditing: a case study of internal auditing in natural resources departments
钱京晖
QIAN Jinghui
摘要(Abstract):
本文梳理了内部审计高质量发展的内在要求,归纳了当前人工智能(AI)的主要能力,结合自然资源部门内部审计的特点,提出AI赋能内部审计高质量发展必要且可行。在分析内部审计应用场景基础上,提出AI赋能内部审计高质量发展的总体思路,即整合通用大模型、自然资源行业大模型、法律法规知识库、审计知识库,构建内部审计AI专业能力,并以此为底座,研发智能化内部审计系统,与自然资源管理业务系统和财务管理系统对接,实现常态化、无死角监督,提升内部审计质效,实现内部审计的价值创造,进而推动内部审计高质量发展。同时,鉴于AI技术落地需要解决数据建模、数据抽取清洗、分析模型研制、与大模型交互等关键技术问题,以及面临信息安全、成果可靠性、人员技能不足、数据质量等方面的挑战,本文提出本地化部署、循序渐进、完善制度规范、强化培训等实施策略。
This paper combs through the intrinsic requirements for the high-quality development of internal auditing, summarizes the main capabilities of current artificial intelligence(AI). Combining the characteristics of internal auditing in the natural resources departments, it proposes that AI-enabled internal auditing with AI for highquality development is not only necessary but also feasible. Based on the analysis of application scenarios of internal auditing, the overall approach to empowering internal auditing with AI for high-quality development is proposed. This approach involves integrating general large language models, natural resources industry-specific models, legal and regulatory knowledge bases, and auditing knowledge bases to build specialized AI capabilities for internal auditing. Using this as a foundation, an intelligent internal audit system will be developed and integrated with the natural resources management and financial management systems to achieve consistent and comprehensive supervision, enhance the quality and efficiency of internal auditing, create value through internal auditing, and thus promoting its high-quality development of internal auditing. At the same time, considering that the implementation of AI technology requires addressing key technical issues such as internal data modeling, data extraction and cleaning, analysis model development, and interaction with large models, and faces challenges related to information security, reliability of results, insufficient personnel skills, and data quality, this paper proposes implementation strategies such as localized deployment, gradual progress, improving institutional standards, and strengthening training.
关键词(KeyWords):
人工智能;内部审计;高质量发展;智能化内部审计系统;自然资源
artificial intelligence;internal auditing;high-quality development;intelligent internal audit system;natural resources
基金项目(Foundation):
作者(Author):
钱京晖
QIAN Jinghui
参考文献(References):
- [1]毕秀玲. DeepSeek背景下内部审计的机遇、挑战与应对[J].中国内部审计,2025(5):1.
- [2]《审计观察》编辑部. DeepSeek赋能内部审计的策略与探索[J].审计观察,2025(4):18-19.
- [3]张磊,魏航秋.人工智能赋能内部审计:深度融合与创新发展[J].中国内部审计,2025(4):36-39.
- [4]叶燕. AI赋能内部审计:数据挖掘与分析的新路径[J].中国会展,2025(7):123-125.
- [5]王大贤,胡政杰,张乔,等.以DeepSeek为代表的人工智能技术在外汇管理内部审计中的运用初探[J].经济责任审计,2025(4):47-51.
- [6]张文芳. ChatGPT驱动的智能内部审计研究[J].现代商贸工业,2025(11):149-151.
- [7]中国农业银行审计局昆明分局课题组.基于DeepSeek大模型创新构建商业银行智能审计体系[J].中国内部审计,2025(5):11-15.
- [8]茅东萍.推动内部审计科学规范发展奋力开创协会工作新局面:中国内部审计协会第八届理事会第二次会议工作报告[J].中国内部审计,2025(4):4-12.
- [9]孙雪东.以“一张图”建设推动国土空间数字化治理能力提升[J].自然资源信息化,2025(3):1-7.
- [10]肖飞,吴洪涛,郭文华,等.自然资源行业大模型建设框架与典型场景研究[J].自然资源信息化,2024(6):54-62.
- [11]刘聚海,胡玥,姜喆,等. AI大模型综述:兼论AI赋能不动产登记的基本思路[J].自然资源信息化,2024(4):1-18.
- [12]李磊,杨道广.国家审计高质量发展:内涵、现状与路径[J].审计研究,2021(5):9-15.
- [13]孙小平.高校内部审计高质量发展路径选择[J].合作经济与科技,2025(11):154-156.
- [14]李凤雏.新时代内部审计高质量发展的科学规范路径研究[J].财会月刊,2025,46(12):30-35.
- [15]倪文德,詹俊宁,周友华.政府治理数字化转型背景下的科技强审路径研究[J].审计研究,2023(6):8-13.
- [16]刘聚海,程立海,耿雯,等.数字时代背景下自然资源信息化科技创新若干问题探讨[J].自然资源信息化,2023(2):1-12.
- 人工智能
- 内部审计
- 高质量发展
- 智能化内部审计系统
- 自然资源
artificial intelligence - internal auditing
- high-quality development
- intelligent internal audit system
- natural resources